Package: EventPredInCure 1.0
EventPredInCure: Event Prediction Including Cured Population
Predicts enrollment and events assumed enrollment and treatment-specific time-to-event models, and calculates test statistics for time-to-event data with cured population based on the simulation.Methods for prediction event in the existence of cured population are as described in : Chen, Tai-Tsang(2016) <doi:10.1186/s12874-016-0117-3>.
Authors:
EventPredInCure_1.0.tar.gz
EventPredInCure_1.0.zip(r-4.5)EventPredInCure_1.0.zip(r-4.4)EventPredInCure_1.0.zip(r-4.3)
EventPredInCure_1.0.tgz(r-4.4-any)EventPredInCure_1.0.tgz(r-4.3-any)
EventPredInCure_1.0.tar.gz(r-4.5-noble)EventPredInCure_1.0.tar.gz(r-4.4-noble)
EventPredInCure_1.0.tgz(r-4.4-emscripten)EventPredInCure_1.0.tgz(r-4.3-emscripten)
EventPredInCure.pdf |EventPredInCure.html✨
EventPredInCure/json (API)
# Install 'EventPredInCure' in R: |
install.packages('EventPredInCure', repos = c('https://bo-wei.r-universe.dev', 'https://cloud.r-project.org')) |
- finalData - Final enrollment and event data after achieving the target number of events
- interimData1 - Interim enrollment and event data before enrollment completion
- interimData2 - Interim enrollment and event data after enrollment completion
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 11 months agofrom:6d18c9ea82. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 09 2024 |
R-4.5-win | NOTE | Nov 09 2024 |
R-4.5-linux | NOTE | Nov 09 2024 |
R-4.4-win | NOTE | Nov 09 2024 |
R-4.4-mac | NOTE | Nov 09 2024 |
R-4.3-win | NOTE | Nov 09 2024 |
R-4.3-mac | NOTE | Nov 09 2024 |
Exports:b4pstChen_2016_event_timeChen_2016_event_time_abovetime0Chen_2016_event_time_piecewise_exp_abovetime0FH_testfitDropoutfitEnrollmentfitEventgetPredictionloglik_Chen_exponentialloglik_Chen_log_logisticloglik_Chen_log_normalloglik_Chen_piecewise_exponentialloglik_Chen_weibullpredictEnrollmentpredictEventsmedSP_Chen_exponentialSP_Chen_log_logisticSP_Chen_log_normalSP_Chen_piecewise_exponentialSP_Chen_weibullsummarizeObservedtest_plottest_procedurette
Dependencies:askpassassertthatbase64encbbmlebdsmatrixBHbslibcachemclicolorspacecpp11crosstalkcurldata.tabledeSolvedigestdplyrerifyevaluateexpmfansifarverfastGHQuadfastmapflexsurvfontawesomefsgenericsggplot2gluegtablehighrhtmltoolshtmlwidgetshttrisobandjquerylibjsonliteKMsurvknitrlabelinglaterlatticelazyevallifecyclelubridatemagrittrMASSMatrixmemoisemgcvmimeMLEcensmsmmstatemuhazmunsellmvtnormnlmenumDerivopensslpermpillarpkgconfigplotlypromisespurrrquadprogR6rappdirsRColorBrewerRcppRcppArmadillorlangrmarkdownrstpm2sassscalesstatmodstringistringrsurvivalsystibbletidyrtidyselecttimechangetinytextmvtnsimutf8vctrsviridisLitewithrxfunyaml